Integrable system of the heat kernel associated with logarithmic potentials
نویسندگان
چکیده
منابع مشابه
Inflationary models with logarithmic potentials.
We examine innationary universe models driven by scalar elds with logarithmic potentials of the form V () = V 0 p (ln) q. Combining the slow-roll approximation with asymptotic techniques, we identify regions of the potential where innation may occur and obtain analytic expressions for the evolution of the eld and the metric in these cases. We construct a family of exact solutions to the equatio...
متن کاملOn the logarithmic comparison theorem for integrable logarithmic connections
LetX be a complex analytic manifold, D ⊂ X a Koszul free divisor with jacobian ideal of linear type (e.g. a locally quasi-homogeneous free divisor), j : U = X −D →֒ X the corresponding open inclusion, E an integrable logarithmic connection with respect to D and L the local system of the horizontal sections of E on U . In this paper we prove that the canonical morphisms ΩX(logD)(E(kD)) −→ Rj∗L, j...
متن کاملnew semigroup compactifications via the enveloping semigroups of associated flows
this thesis deals with the construction of some function algebras whose corresponding semigroup compactification are universal with respect to some properies of their enveloping semigroups. the special properties are of beigan a left zero, a left simple, a group, an inflation of the right zero, and an inflation of the rectangular band.
15 صفحه اولThe Last Integrable Case of Kozlov-treshchev Birkhoff Integrable Potentials
The integrability of this system was conjectured in [16] and in the book of V.V. Kozlov [17]. This system appears first in the classification of Birkhoff integrable systems by Kozlov and Treshchev [16]. The classification involves systems with exponential interraction with sufficient number of integrals, polynomial in the momenta. The classification gives necessary conditions for a system with ...
متن کاملIntegrable Hamiltonian Systems with Vector Potentials
We investigate integrable 2-dimensional Hamiltonian systems with scalar and vector potentials, admitting second invariants which are linear or quadratic in the momenta. In the case of a linear second invariant, we provide some examples of weakly-integrable systems. In the case of a quadratic second invariant, we recover the classical strongly-integrable systems in Cartesian and polar coordinate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Polonici Mathematici
سال: 2000
ISSN: 0066-2216,1730-6272
DOI: 10.4064/ap-74-1-51-64